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Coalescence and fragmentation of equal and unequal liquid-drop pairs are studied
using a new experimental technique in which mercury drops collide while sliding on
a horizontal glass surface. The limits for coalescence measured as a function of the
incident relative velocity and impact parameter are found to be similar to what has
been reported for free-moving drops of other liquids, while new correlations are found
to occur among the number, size, speed and angular distribution of fragmentation
residues. The predictions of various models, including a dynamic theory originally
developed for nuclear reactions, and specifically modified by us for macroscopic
applications, are compared with the observations.

1. Introduction
Since the pioneering works of Plateau (1873) and Rayleigh (1882), collisions among

pairs of liquid drops (henceforth simply referred to as ‘drops’) have been investigated
extensively by meteorologists (e.g. Wang 1988) and atomization and spray experts (e.g.
Yule & Dumouchel 1994). The evolution of this research up to 1970 was thoroughly
reviewed by Park (1970), himself a major contributor, and up to 1978 by Pruppacher
& Klett (1978). More recently, the works of Podvysotsky & Shraiber (1984), Ochs,
Czys & Beard (1986), Ashgriz & Givi (1987), Brenn & Frohn (1989), Ashgriz &
Poo (1990), Salita (1991), Jiang, Umemura & Law (1992), Menchaca-Rocha et al.
(1993, see also Cuevas et al. 1993) and Qian & Law (1997) are good examples of the
continued interest in this field. Reviews of the important works written in Russian
may be found in the books of Vasenin et al. (1986) and of Sternin & Shraiber (1994).

To date, most quantitative experimental studies on ‘direct’ collisions (those in
which liquid contact is established) have been aimed at determining the boundaries
between two possible outcomes: ‘coalescence’ (one final drop) and ‘fragmentation’
(more than one final drop), as a function of the initial collision parameters, i.e. the
relative velocity vr , the ‘impact parameter’ b (measuring the centrality of the collision)
and the type of liquid. However, concerning fragmentation, limitations inherent to
the techniques used so far have prevented a detailed evaluation of final parameters,
yielding mostly qualitative descriptions of the phenomena. Practical applications
require a more quantitative understanding of the number, mass, speed and direction
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of the fragments produced when two drops collide at a relative velocity sufficient for
fragmentation.

Here we report on the results of 1000 binary drop collisions performed with an
experimental technique based on the enhanced mobility found (Menchaca-Rocha
1992) for mercury drops laying on flat horizontal rough glass surfaces. This method
allowed us to carry out detailed measurements of initial conditions (the two masses
ml, ms and velocities vl , vs, of the large and small initial drops, respectively, and the
impact parameter), shape evolution, and final conditions (the mass mi, speed vi and
direction θi of the ith residue). As we shall see, besides a determination of the
boundary between coalescence and fragmentation, this experimental method allows
a more detailed study of the initial conditions necessary for fragmentation into a
given number of residues (the ‘multiplicity’), and to establish the correlations between
various parameters, such as the speed of those residues and their emission angle, and
between the energy loss, the impact parameter, and the relative velocity (vr = vl − vs).
Based on the similarities between our data and what has been reported for other
liquids, we compare these results with predictions of a number of theories originally
developed for free-moving drops, including a nuclear fragmentation model (Cârjan,
Sierk & Nix 1986), which we have modified for macroscopic applications.

This work is organized as follows. Section 2 defines terms which are used in the text.
To better appreciate the advantages and limitations of our method, a brief review
of the techniques used so far in this field is presented (§ 3), before describing, in
§ 4, our experimental technique. Section 5 presents the experimental results obtained.
Since these include observables which have been measured using more standard
techniques, to illustrate the degree to which the present results can be generalized,
in § 6 a comparison is made between our data and those available for other liquids.
Concerning the theoretical situation, § 7 reviews the best known models in the field,
comparing, when possible, their predictions with the data. Section 7 also presents the
predictions of the dynamical model. The conclusions are summarized in § 8.

2. Definitions
Since our purpose is to further the understanding of the evolution and possible

fragmentation of liquid masses formed in direct drop interactions, here the term
‘collision’ will exclude ‘bouncing’, a mechanism in which direct contact is prevented
by the intermediate air film (Qian & Law 1997) Although interesting in its own right,
for our purposes, this gas-drainage effect will be viewed as a complication, rather
than as a source of information.

The most relevant parameters determining the outcome of this type of drop
collisions in air have been found (Park 1970) to be: the initial drop masses ml and
ms, the corresponding diameters Dl and Ds, the relative speed |vr| (or simply, vr), the
impact parameter b (figure 1), and the liquid’s physical properties: density ρ, surface
tension σ and kinematic viscosity ν. The following dimensionless parameters can thus
be defined: the diameter ratio ∆ = Dl/Ds (henceforth referred to as ‘size asymmetry’,
or just ‘asymmetry’), the reduced impact parameter B = b/D̄, where D̄ = (Dl +Ds)/2,
and the Weber number We = ρ d v2

r /σ, where d represents a particular choice of
diameter (Dl , Ds or D̄). When dealing with size-asymmetric systems (Dl 6= Ds), we
shall use the d = Ds convention, adopted by most authors in this field (Pruppacher
& Klett 1978). Except for the recent works of Jiang et al. (1992), and Qian & Law
(1997), who dealt with water and a variety of hydrocarbon compounds, little is known
about the ν-dependence of liquid drop collisions. Note that we chose to compare our
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results (see § 5) with those reported for liquids of similar kinematic viscosity so that,
other factors being fixed, parameters depending explicitly on ν, such as the Reynolds
number Re = ρ d vr/ν, are not expected to vary significantly.

3. Review of experimental methods
The observation of collisions between pairs of drops moving in air involves two

main techniques: the controlled production of fast moving drops, and the registration
of a sequence of images from which the detailed analysis of the action can be made.
To date, the most popular methods to generate drops for this type of experiment can
be viewed as modern versions of the one proposed by Rayleigh (1882), who produced
a fairly uniform stream of equally spaced equal-size drops by breaking up a water
jet from a capillary which is mechanically excited using the vibrations of a tuning
fork, later replaced by an electronic device. Since then, drop collisions have been
observed by aiming two of those drop streams against each other. This technique
produces drops with relative speeds in the 0.1 6 vr 6 10 m s−1 range. Faster (vr 6 50
m s−1) drops of similar sizes have been obtained by Podvysotsky & Shraiber (1984)
and by Menchaca-Rocha et al. (1986) using a technique based on capillary tubes
soldered radially to hollow cylindrical shafts. The motor-driven horizontal rotation
of those shafts causes a centrifugal flow of liquid through the capillaries leading to
the production of droplets in the plane of rotation. A stream of well-separated liquid
drops is then produced by selecting those moving in a given direction with the aid
of a collimator. All of the above-mentioned techniques produce small (D 6 0.5 mm)
drops. Individual collisions involving larger (1 6 D 6 5 mm) drops were observed
by McTaggart-Cowan & List (1975) through the use of vertical droplet accelerators
combining gravitational and gas propulsion stages.

Collisions have been observed for drops approaching each other with a wide va-
riety of relative orientations θ (see figure 1), from parallel (θ = 0◦), to antiparallel
(θ = 180◦). Since the influence of terrestrial gravity causes all trajectories with hori-
zontal components to have a parabolic shape, most experiments aim at reducing the
local curvature to justify a straight-trajectory approximation. Under those conditions,
the velocity vectors vl and vs define the collision plane. Thus, the initial collision
parameters vr and b are usually deduced from an analysis of images taken from a
view perpendicular to that plane. Those images are obtained using fast photography,
video- or cine-cameras. In the techniques used so far there is a coupling between the
drop formation and the acceleration stage preventing a direct evaluation of the initial
drop masses ml and ms. Thus the experimenters rely on values which are estimated by
two methods: (a) dividing the amount of liquid collected from each droplet generator
over a period of time by the number of droplets produced during the same period
(e.g. Ashgriz & Poo 1990); (b) using the apparent drop size from pre-collision images
(e.g. Brazier-Smith, Jennings & Latham 1972). The sizes of the collision fragments
(or ‘residues’, i.e. all the drops formed after the collision), have also been obtained
from photographic images (e.g. McTaggart-Cowan & List 1975).

The accuracy of these measurements places demands on a number of conditions,
which can be difficult to fulfil. In the case of ml and ms, method (a) requires that
the mass spectrum of the droplets has a narrow distribution, while in method (b) the
distance from the droplet streams to the image-taking device should not change from
drop to drop. Since the precise instant at which the initial drops come into contact is
rarely registered, the determination of (b) is based on the assumption (Park 1970) that
the drop trajectories are smooth and that the line of sight of the camera is strictly
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perpendicular to the collision plane. A problem common to small-vr measurements
is that the droplets are often observed to approach each other slowly while falling in
air at large speeds. In those conditions, not only does their motion occur in turbulent
air, but the interaction between the droplets’ wakes introduces distortions on the
trajectories (Ochs et al. 1986).

Important progress has been made to understand and reduce these sources of
uncertainty in the determination of initial conditions. Examples of this are the works
of Park & Crosby (1965) and Brenn & Frohn (1989) concerning the influence of
the liquid flow rate and the capillary oscillation frequency on the width of mass
distributions, of Poo & Ashgiz (1991) on the influence of air drag on the drop stream,
of Vassallo & Ashgriz (1991) on the formation of satellite drops in the breakup of the
liquid jet, and of Adam, Lindbland & Hendricks (1968) who proposed a modification
to the Rayleigh method in which the influence of the ambient air dragged along
by the droplet streams is eliminated by electrostatically selecting out of the streams
the individual droplet pairs to be observed. So far, however, little has been done to
reduce the uncertainties associated with the determination of final parameters. For
instance, the size of drops just after the collision, which is difficult to estimate from
photographic plates since, in general, they are oscillating and rapidly moving away
from the focal plane of the image-taking device. To our knowledge, collecting the
individual residues for a direct evaluation of their size has not been attempted.

4. The mercury-drop collider
Some of the problems described in the previous section would be solved if a

technique could be developed in which: (a) the mass of all droplets (initial and final)
could be measured accurately, and (b) the position of all droplets could be followed
in space as a function of time. One such technique is now described which is based
on observing the interactions of mercury drops moving along a specially treated
horizontal glass surface. We have built a liquid-drop collider (nicknamed ‘Gotatron’,
where gota is Spanish for drop) to observe the interactions of mercury drops moving
along a flat horizontal glass surface (figure 2), in which the drag induced by wetting
is minimized by a roughening procedure which greatly reduced the mercury–glass
contact. As described in detail elsewhere (Menchaca-Rocha 1992), this procedure
results in a five-fold gain in the mobility of the mercury drops. Collision experiments
involving mercury drops moving on solid surfaces have also been reported by Salita
(1991). However, this interesting work was limited to 30 collisions, allowing only
a rough determination of the coalescence–fragmentation transition, and giving no
quantitative details about the fragmentation process.

In the Gotatron the initial drops of pre-determined masses ml and ms, are ‘acceler-
ated’ to velocities vl and vs with the aid of 30◦ plastic ramps fixed on two extremes
of the glass surface. A groove on each ramp guides the drops down the slopes and
smoothly into straight horizontal trajectories. Each ramp can be rotated, orienting
the drops’ trajectories to be parallel and separated by an impact parameter b. The
speed of the drops is varied by adjusting the height from which they are released. In
this way, the outcome of the drop collisions can be studied as a function of b, vr and
∆. The information, needed to determine the initial parameters vr and b, as well as
the speed vi and direction of motion θi of each final drop i, is obtained by recording
the action with a fast-shutter-speed (1/10 000 s) video system having a 30 frames s−1

recording frequency. As described in Menchaca-Rocha (1992), mercury drops moving
on a glass surface do so as if subject to a (linear) velocity-dependent retarding force.
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Figure 1. Definition of the relevant geometric collision parameters.
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Figure 2. Schematic diagram of the ‘Gotatron’. All dimensions are in cm.

Thus, the equation of motion of every drop is determined through a minimum χ2 fit to
the position vs. time data to determine the initial speed and the deacceleration coeffi-
cient, which are relevant kinematic parameters. The uncertainty in the determination
of speeds through this procedure is less that 5%. The final number of drops, the
‘multiplicity’ (Nf), is measured by counting all the drops formed after the collision;
however, since secondary scattering (often leading to coalescence) among the primary
fragments is not infrequent, a ‘primary’ multiplicity (Np) can also be extracted by
replaying the video images. The initial and final masses are measured with a 0.1 mg
precision analytic scale. The values of all the parameters (initial and final) obtained in
every collision (an ‘event’) were written in a computer data base, from which sorting
routines were used to extract the statistics and parameter correlations presented in
the next section. To our knowledge, this ‘event-by-event’ type of analysis, which is
standard in other fields (e.g. nuclear and high-energy physics), had not been applied
to drop collision experiments before.

For technical reasons (Menchaca-Rocha 1992), the Gotatron is limited to collisions
of mercury drops having masses and velocities in the range 0.2 6 ml,s 6 2.0 g, and
5 6 vl,s 6 50 cm s−1, respectively. The action of every drop-collision experiment
lasts, typically, 1 s (i.e. 30 frames). Therefore the results presented in the next section
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required the analysis of ≈ 30 000 frames. When the imaged area, of 19.2× 14.4 cm2,
is digitized to 640× 480 pixels, the initial drops are represented by ≈ 400 pixels. For
simplicity, in the present study this volume of information is reduced by illuminating
the action from underneath the glass surface (figure 2) and then extracting the drop
contour information on each frame through standard image processing techniques.
Figure 3 shows typical image sequences taken during coalescence and fragmentation
collisions. More details about the drop ‘acceleration’ procedure used may be found
elsewhere (Menchaca-Rocha 1992).

The main advantages of the Gotatron are: (a) it decouples the drop formation and
the acceleration stages, permitting a precise measurement of the initial masses before
acceleration; (b) because the motion is restricted to the horizontal plane, the final drops
travel a finite distance along the glass surface and then stop, allowing us to collect
them and weigh them individually; (c) restricting the motion to a plane eliminates
the ambiguities introduced by out-of-plane components in three-dimensional motion,
allowing more accurate determinations of the collision parameters from images taken
from a fixed view; (d) the lack of vertical motion minimizes the velocity of the drops
relative to air which, as mentioned before, is particularly important for small We
measurements, and (e) compared with other liquids (water, glycerine, etc.), our larger
D (≈ 5 mm) and higher density-to-surface tension (ρ/σ = 3×104 s2 m−3) drops allow
observations at lower vr values for the same We, further reducing the influence of the
ambient gas. As we shall see, measurements with larger drops also allow us to test
the generality of the scaling variables used in this field.

The main disadvantages of this instrument are: (a) the mercury-glass interaction
affects the drops’ motion, (b) these, relatively large, drops oscillate around a non-
spherical mean shape, (c) the drops ‘roll’ (Menchaca-Rocha 1992) (rather than slide)
along the glass surface, and (d) compared to collisions among free-moving drops
where the dynamics of the most central (small B) ones involve important out-of-
plane components, in our case those components are strongly damped. We now
discuss the importance of these effects.

First, we have shown (Cuevas et al. 1993) that, in the Gotatron, the drop–glass
interaction is small when compared with the drop–drop interaction. To illustrate this,
let us consider an ‘inelastic’ drop–drop collision, i.e. one in which the temporarily
coalesced system undergoes a two-body fragmentation in which the final drop masses
are very similar to the initial ones (as in figure 3d). This interaction favours our
comparison since in it the amount of relative energy lost to internal degrees of
freedom is small, compared with coalescence events, where all the relative energy is
lost. Figure 4 shows a typical example of the time evolution of the total kinetic energy
ET (t) (i.e. the sum of the individual kinetic energies) of drop pairs having ml = ms = 1
g. There are three distinct regions in the resulting ET (t) curve: (I) before, (II) during,
and (III) after the collision. Extrapolating the strength of the drop–glass interaction
from region (I), we find that the rate of kinetic energy loss during the collision is at
least an order of magnitude greater than before, or after, the drop–drop contact.

Concerning oscillations, they have an arbitrary phase relative to the contact time,
so that, for experiments with sufficient statistics, their main effect is to broaden the B-
distribution. To minimize this problem, the collisions reported here were made to occur
at a distance from the accelerating ramps sufficient to ensure at least a 60% reduction
in the amplitude of those oscillations via viscous damping. The uncertainty in the
determination of B was then quantified from an analysis of the pre-collision images by
measuring the instantaneous eccentricity ε = (α−δ)/(α+δ) of the drops, where α, δ are
the dimensions of the symmetry axes parallel and perpendicular to the drop velocity.
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Figure 3. Time evolution of symmetric mercury-drop collisions: central coalescence in (a) and
peripheral coalescence (b) small-B two- and three-body central fragmentation in (c) and (e),
respectively: large-B two- and three-body peripheral fragmentation in (d) and (f), respectively. The
drops move initially against each other in the horizontal direction, the time runs from left to right
with ∆t = 1/30 s from frame to frame. The [We,B] values corresponding to each time sequence
are: [48.9,0.02] for (a), [15.2,0.58] for (b), [44.7,0.1] for (c), [25.0,0.82] for (d), [83.6,0.01] for (e), and
[34.8,0.62] for (f).
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Figure 4. Evolution of the total energy measured (circles) before (I) and after (III) an inelastic
drop–drop encounter (see figure 3d). The lines represent the best fit of an E(t) = 1
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parametrization which assumes the action of a velocity dependent friction force (see Men-
chaca-Rocha 1992), where vo is the initial velocity, µ is the reduced mass, and βi is the friction
parameter. The rate of energy loss during the collision (II) was estimated by joining curves I and III,
using the same parametrization. The friction coefficients used to draw the lines were βI = 0.5 g s−1,
βII = 13.6 g s−1, and βIII = 0.6 g s−1.

By assuming that, upon contact, the value of D̄ to be used in the determination
of B = b/D̄ for deformed drops can be expressed as 2D̄ = Dl(1 − εl) + Ds(1 − εs),
we used the standard deviation from the mean eccentricities εl and εs (of the large
and small drops, respectively) to estimate the uncertainties in B. This effect depends
on the mass and on the speed of the drops in such a way that, in our case, the
maximum uncertainty in B, corresponding to the heavier and faster drops, does not
exceed ±10%, while the typical values are closer to ±5%. The amplitude of these
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oscillations upon contact turns out to be similar to that reported by Park (1970)
for free-moving drops. To our knowledge, no other author has reported specific
measurements of this sort. Note that for free-moving drops in which the masses are
determined by the apparent size, oscillations add uncertainties which are not present
in our experimental method.

The ‘rolling’ motion introduces a rotational energy, not always present in collisions
between free-moving drops. Since the liquid masses rotate in opposite directions, upon
contact the connecting neck is subjected to a ‘twisting’ motion which tends to lower
its cohesive strength. As will be shown in § 7, this disrupting effect is expected to be
most important at the highest relative velocities. Still, the total angular momentum
associated with this motion, which is parallel to the collision plane, tends to be small
because of the opposite directions of rotation of the intervening drops. Note that
there may be circumstances where the drop formation stage in free-moving drops
actually imparts significant vorticity to the individual drops, so that the rotational
energy present in the mercury–drop experiments may not be so different.

Finally, compared with collisions between free-falling drops, in the Gotatron the
vertical motion is constrained by the glass surface. It has been observed (Ryley
& Bennett-Cowell 1967) that small-B fragmentation occurs in two stages: (a) the
formation of disks, and (b) the collapse, due to excess surface energy, of those disks
into cylinders (in this case, collinear with the initial velocity vectors). The initial
disks are due to an incompressibility-driven radial outward flow occurring along the
contact plane. However, in our case the vertical component of this flow is rapidly
projected back into the horizontal plane, leading to the formation of cylinders (not
disks) in the initial stage, with their axis perpendicular (instead of parallel) to vr .
This effect precludes the direct comparison of the most central collisions between our
results and those from drops moving in free space, particularly concerning the angular
distribution of those residues. Still, if the viscous energy losses are comparable, the
final outcome may be similar with respect to the mass, number and speed of the
residues.

In spite of the complications just described, as shown in § 6, the quantitative features
we observe for mercury drops remain similar to those reported for collisions between
free-moving drops.

5. Results
The data presented here result from the analysis of 1000 collisions, half of them for

symmetric (ml = ms = 1 g) and the rest for asymmetric (ml = 1.5 g, ms = 0.5 g) pairs.
Since these drops are non-spherical, we shall use the horizontally projected diameter
to allow the comparison with collision data from spherical drops. This corresponds
(Menchaca-Rocha 1992) to D = 4.9, 6.5, 8.1 mm for m = 0.5, 1.0, 1.5 g, respectively.
Hence, for size-asymmetric systems we shall use ∆ = 1.65. The collisions were mea-
sured within the 20 6 vr 6 90 cm s−1 range. No systematic vr < 20 cm measurements
were done since that region is dominated by permanent coalescence. The maximum
of vr = 90 cm corresponds to the operational upper limit of the Gotatron (Menchaca-
Rocha 1992). Some of the figures in this section contain theoretical predictions which
will be presented in § 7.

5.1. Shape evolution

Figure 3(a–f) illustrates the time evolution (from left to right) of typical coalescence
(rows a and b), two-body (rows c and d) and three-body (rows e and f) fragmentation,
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∆ = 1, collisions. Rows (a), (c) and (e) correspond to central (B ≈ 0) and (b), (d) and (f)
to peripheral (B ≈ 1) interactions. In our experimental situation, where aerodynamic
effects (such as bouncing) are small, all central collisions below a certain critical
We lead to coalescence. The top sequence (row a) is an example of a coalescence
interaction observed just below that limit. Upon contact (between frames 1 and 2) a
neck-like structure is formed. Eventually (3rd frame), incompressibility forces a flow
perpendicular to the incident direction. This flow forms cylindrical shapes. Below the
limiting-We condition, those cylinders develop an intermediate neck (5th frame) strong
enough to support the flow-driven stretching. The subsequent evolution (frames 6 and
beyond) shows a damping oscillatory motion with maximal elongations alternating
between being parallel and perpendicular to the incident direction. As shown in row
(b), off-centre coalescence interactions also form stretching cylinders, now rotating
(frames 3 and 4), eventually developing intermediate necks (5th frame) which, below
a certain B-dependent limiting We, are strong enough to support the inertial pull of
the outer liquid masses. After reaching a maximal stretching stage (between frames
5 and 6), the shape evolution consists of a combination of (damping) vibrational
and rotational motions. The initial stages of B ≈ 0 two-body (row c) and three-body
(row e) fragmentation are similar to the lower-We central coalescence interactions
(see row a), with an initial perpendicular flow, forming stretched cylinders on which
now one or two (or more) unstable necks evolve, eventually leading to the formation
of two, three (or more) residues. Peripheral fragmentation (rows d and f) also evolve
initially in a way which is qualitatively similar to the lower-We case (row b), except
that stretching now leads to the formation of one or two (or more) unstable necks
which break up into two, three (or more) residues.

The time sequences shown in figure 3 are qualitatively similar to what has been
reported (e.g. Park 1970) for collisions of drops moving in free space in the same
We 6 125 regime, with the existence of critical limiting We-values for both peripheral
and central interactions and the formation of stretched cylindrical configurations
which, depending on B and We, can break into two, three or more fragments. As
mentioned before, the most important difference occurs for B ≈ 0 collisions (rows c
and e). In free space, the outward flow (along the contact plane) leads to the formation
of disk-like structures which eventually collapse forming the unstable cylinders (Ryley
& Bennett-Cowell 1967). Thus, the residues are emitted in a direction parallel to
the incident one. In our case, however, the initial flow is constrained by gravity
to the horizontal plane, thus forming the unstable cylindrical configurations in the
initial outward-flow stage (not in the subsequent collapse). Consequently, our B ≈ 0
fragmentation residues are emitted in a direction perpendicular (instead of parallel)
to the incident direction.

5.2. Number of residues as a function of B and We

The distributions of normalized impact parameter B and We values covered in the
experiments are shown in figures 5(a–d) for ∆ = 1, and 5(e–h) for ∆ = 1.65, where
they are classified by the primary multiplicity Np of the collision. The boundary
between coalescence and fragmentation is seen in figure 5(a) and 5(e) as a well-
defined transition cutting diagonally across the B vs. We plane which (for a given
We) defines an upper limit for coalescence. Alternatively (again, for a fixed We
value) this diagonal transition appears as a lower limit for fragmentation (see fig-
ure 5b–d, f–h). From now on, this border between coalescence and fragmentation
will be referred to as the ‘C-F boundary’. The data points corresponding to > 2
multiplicities (see figure 5a–d, e–h) tend to group along diagonal regions with con-
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Figure 5. Mass-symmetric (left-hand column) and size-asymmetric (right-hand column) impact
parameter vs. Weber number plots, for primary multiplicities Np = 1, 2, 3, and > 4 in rows (a, e),
(b, f), (c, g), and (d, h), respectively. In (d) and (h) the circles, squares, and diamonds represent
Np = 4, 5, and > 6, respectively. The hatched zones in (a–d) show the ten regions used to locate the
C-F boundary (see § 6.1), while the solid lines represent the fitted curve using the parametrization
described in § 7.1.4.

siderable dispersion. Since the C-F boundary is better defined (see figure 5a,e), we
do not associate this scatter with an experimental deficiency. There are aspects of
the data represented in figure 5(b–d, f–h) which could explain this scatter: (a) the
multiplicity does not contain information about the size of the residues, and (b)
fragmentation is likely to be a non-linear phenomenon in which some variables
could show a chaotic behaviour. Comparing figures 5(a–d) and 5(e–h) we also see
that, for the same We value, the coalesced drops formed in size-asymmetric colli-
sions seem to be more stable than their ∆ = 1 counterparts. The data in figure 5
also indicate a direct correlation between B and Np. This is better illustrated in
figure 6, where the mean impact parameter B̄ is plotted as a function of the pri-
mary multiplicity Np, for the three We windows indicated in the caption, in (a) for
∆ = 1 and in (b) for ∆ = 1.65. Note that, for a given B̄ value, Np increases with
We.

The Np-dependence of the (We- and B-integrated) frequency distribution of the
residues’ mass mi (normalized to the total mass of the system mt = ml + ms) is
shown in figures 7(a–d) and 7(e–h) for ∆ = 1 and ∆ = 1.65, respectively. In both
cases, fragmentation is found to produce two masses which are similar to the initial
ones (the ‘quasi-initial’ residues), accompanied by tiny (‘satellite’) drops. This figure
shows that the increment in multiplicity is linked to an increasing number of satellite
drops, but seems to have little impact in reducing the gap between the different mass
groups.
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Figure 7. Fractional-mass frequency distributions for ∆ = 1 (left-hand column) and ∆ = 1.65
(right-hand column) systems, with Np = 2, 3, 4 and > 5 in rows (a, e), (b, f), (c, g) and (d, h)
respectively.

5.3. Mass distributions

Our experimental technique allows us to study the evolution of the residues’ mass
distribution with B and We, as illustrated in figure 8(a–c) for ∆ = 1 and figure 8(d–f)
for ∆ = 1.65 collisions, using the same We windows as figure 6. As can be appreciated
in (a) and (d) at the lowest We, coalescence (mi/mt = 1) dominates at all but the
highest B, in (a), where fragmentation occurs leaving two masses similar to the initial
ones (the quasi-initial residues), occasionally accompanied by satellite drops. The
corresponding image sequences reveal that those satellite drops originate in the neck



302 A. Menchaca-Rocha et al.

0.4

0 0.2 0.4

0.8

0

B

0.6 0.8

(a)

(b)

0

(b)

(c)

(d )

(e)

( f )

0.4

0.8

mi/mt

1.0

0.4

0.8

B

0

B

0.2 0.4 0.6 0.8
mi/mt

1.0
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and ∆ = 1.65 (right-hand column) collisions, using the same We windows as in figure 6: (a, d) lowest
values, (b, e) intermediate values, (c, f) highest values. The horizontal lines represent the lowest Bu
two-body fragmentation limit of the corresponding We region, predicted by the Brazier-Smith et
al. (1972) model (see § 7.1.2).

region. The lack of fragmentation in the high B-value region of (d) reflects again
the higher stability of size-asymmetric systems. At intermediate We values (b, e),
fragmentation extends to lower B-values, reducing the coalescence-dominated region
to B 6 0.4. We can now appreciate an impact-parameter dependence of the mass
groups, such that, as B decreases down to the 0.4 region, in (b) and (c) the width of
the ∆ = 1 quasi-initial residue group broadens symmetrically, while in (e) and (f) the
separated quasi-initial groups approach each other. Below B ≈ 0.4 in (c) the single
(broad) quasi-initial group splits into two rapidly separating mass groups, while in
(f) the gap between the quasi-initial groups also increases rapidly. Concerning the
evolution of the satellite-drop mass group, as B decreases, this group splits in two
components (more clearly seen in (b), one composed of very small drops, and the
other having an increasing mass. The corresponding image sequences reveal that this
new mass group is produced in three-lobed configurations (see figure 3e) in which
a large drop is formed in the neck’s centre region. In those situations, the smaller
satellite drops are residues from the breaking up of the two necks.

5.4. Other observables

Another important feature of our experimental method is the possibility of finding
correlations among the various parameters. Examples of this are shown in figure 9(a–
c) where the speed vi of each residue is plotted as a function of its direction θi, and in
figure 9(d–f) where vi is plotted as a function of B for size-symmetric ∆ = 1 collisions,
using the same We windows as previous figures. Here the speed of the residues is
normalized to the average speed of the incident drops (roughly vr/2) and the deflection
angle is measured from the initial direction (assuming axial symmetry). These figures
show how the spatial distribution of residues evolves from a near-isotropic one, of
slow moving residues (figure 9a), to a concentration of residues of all speeds along the
forward (θ ≈ 0◦) direction (figure 9c) at large We values, while figure 9(d–f) shows
how the correlation between the speed of the residues and B increases with We.
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Figure 9. Residue speed vi (normalized to the average speed of the incident residues) distribution
for ∆ = 1 systems, shown as a function of deflection angle θ (left-hand column) and of B (right-hand
column) collisions, using in (a, d), (b, e) and (c, f) the same three We regions, and in the same order,
as in figure 8.

This type of data also allows a determination of indirect parameters such as the
fraction of the total energy lost to dissipative processes

∆E = (Ei − Ef)/(Ei) (1)

using Ej = Kj + σSj , where Kj represents the total initial (j = i) and final (j = f)
kinetic energies and Sj the sum of the surface areas of all the drops at each stage (i
or f), estimated from the drops’ masses. This result is illustrated in figures 10(a–c)
and 10(d–f), for ∆ = 1 and ∆ = 1.65, respectively, where we observe a correlation
between ∆E and B, and how this correlation evolves with We. At the lower We
values (figure 10a, d), where coalescence dominates (giving a constant ∆E), there is
a significant gain in surface energy ∆S = Si − Sf , equivalent to ≈ 60% of the total
initial energy.

6. Comparison with other data
In this section we compare in more detail our observations with data obtained with

standard experimental techniques, particularly concerning the limits for coalescence,
as well as other aspects for which data exist. Limitations inherent to our technique
prevent us from addressing other important issues such as the diffusion of mass,
qualitatively investigated by Brazier-Smith et al. (1972) and by Ashgriz & Poo (1990)
through the use colour-dyed water drops.

6.1. The C-F boundary

The existence of a well-defined boundary between coalescence and fragmentation in
the B vs. We plane was first established by Adam et al. in 1968 (see their figures 4
and 6). As schematically shown in figure 11, at large B values this C-F boundary
begins at a critical Weu value, below which all collisions (in which liquid contact is
established) lead to permanent coalescence. Beyond Weu, the C-F boundary typically
adopts a Bu ∝We−1/2 dependence, which we shall call the ‘upper’ C-F branch. Some
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experiments indicate that a second critical value Wel appears at B = 0, beyond which
fragmentation also occurs. As We is increased, this fragmentation mode extends
towards non-zero impact parameters following a (not well established) increasing
function of We, which we will call the ‘lower’ C-F branch, Bl . When observed,
this branch is reported to merge into the upper branch at B ≈ 0.3. Such crossing
defines another important critical value, Wem, beyond which coalescence ceases to be
observed.

Since, as to be explained in § 7, the mechanisms determining the upper and lower
C-F branches are generally thought to be different, the present discussion will be
made separately for the upper and lower C-F branches. It is important to note that
the data to be compared are not always presented in the same form. Some of them
(including ours) consist of sets of values for the binary ‘outcome’ (coalescence or
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Figure 12. The outcome variable N(We,B), extracted from the B̄ = 0.35 bin (hatched zones in
figure 5) as a function of We. N = 1, 2 circles represent coalescence and fragmentation events,
respectively. The solid curve results from a fit (see § 6.1) used to determine the critical Weu (dashed
line).

fragmentation) variable plotted in the B vs. We plane, from which the position of
C-F boundary can be deduced, while other authors present direct C-F boundary
data. Thus, a comparison of the available data requires a procedure to extract the
C-F information from ‘outcome’ data. For that purpose we have used a method
in which the outcome of the collisions is, first, associated with a binary variable
N(We,B), such that N = 1 indicates coalescence (only one final drop) and N = 2
indicates fragmentation (two or more drops). Then, pairs of coordinates (Wei, Bi)
along the N = 1 ↔ 2 transition can be extracted by fixing one of the variables (We
or B) and scanning on the other (e.g. hatched zones on figure 5a–d). Note that the
(sometimes observed) two-branch structure of the C-F boundary makes the scanning
on We (i.e. ‘binning’ on B) a simpler choice, since in that perspective the N = 1↔ 2
transition is single-valued. The mean critical Wei corresponding to each Bi bin can
then be extracted by fitting a Ni(We) = 2− {1 + exp[(We−Wei)/a]}−1 function (see
figure 12, corresponding to the hatched regions in figure 5a–d), leaving Wei and a
as free parameters, the latter being a measure of the uncertainty of the former. In
our case, to guarantee sufficient statistics (≈ 50 ‘outcome’ values) per bin, the B-axis
was subdivided in ten equal-size bins. The resulting C-F boundary data from our
mercury-drop experiments are shown in figures 13(a) and 13(b), for the ∆ = 1 and
∆ = 1.65 data, respectively. The error-bars shown in We correspond to the fitted a
values, while those in B reflect the uncertainty due to oscillations (see § 4).

The other ‘outcome’ data sets to be considered in this comparison, namely those
from Park (1970) and Ashgriz & Poo (1990), correspond to measurements taken at
fixed We values while varying B continuously (typically 20 ‘outcome’ values), making
the binning on We a natural choice. Since, in this case, the N = 1 ↔ 2 transition is
double-valued, two Ni(Bi) = 2−{1+exp[(B−Bi)/a]}−1 fits per We bin were necessary
to locate the position of the upper and lower C-F branches.

Concerning the procedures used by other authors to extract direct C-F data,
Adam et al. (1968) analysed photographic image sequences from water-drop collisions
to determine the impact parameter and relative velocity, and then applied a non-
described averaging procedure among ‘fifteen to twenty’ collisions to determine points
along the C-F boundary (no error-bars are given). Brazier-Smith et al. (1972) made
on-line measurements of the C-F boundary by, at fixed We values, varying the lateral
displacement (taken as a measure of b) of the two parallel drop streams, and looking
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Figure 13. The C-F boundary extracted from the ∆ = 1 (a) and ∆ = 1.65 (b) mercury-drop data of
figures 5(a–d) and 5(e–h), respectively, using the procedure described in § 6.1. The curves represent
the general behaviour observed for collisions in space (dashed) and how we expect it to be affected
by ‘rolling’ (solid) (see § 7.1.4).

for the critical value at which coalescence gives way to fragmentation. Although no
error bars are quoted on each point, these measurements (see figure 7 of Brazier-
Smith et al. 1972) show large fluctuations (> 60% at low We). Finally, Brenn &
Frohn (1989), and Jiang et al. (1992), who also report direct C-F measurements, give
no details on how they were obtained or the uncertainties involved.

6.1.1. The upper C-F branch

The B vs. We data sets from other authors are shown in figures 14(a–f) and
15(a–d), for size-symmetric and size-asymmetric collisions, respectively. As can be
observed, there is a qualitative similarity between them, showing a typical

Bu = (Weu/We)1/2 (2)

dependence (solid curves), where the Weu is the value of We at Bu = 1. The common
shape of the upper C-F branch allows us to reduce the comparison to the relative
values of one parameter, Weu, obtained from a fit to the data using equation (2). In
§ 7 we see how the deviation from this Bu ∝ We−1/2 behaviour found in the low-B
(high-We) region of the mercury data can be understood as due to ‘rolling’ (solid
curves in figure 13). Note that at B = 1 both predictions (dashed and solid curves)
are very similar. In figure 16(a) we plot the Weu values obtained for all the ∆ = 1
data as a function of D, while in figure 16(b) we show how that parameter varies
with ∆. In (a) the data corresponds to cases for which the drop diameters are known,
namely the water data of Adam et al. (1968), the propanol data of Brenn & Frohn
(1989), the data of Park (1970), the water data of Jiang et al. (1992), the water data
of Brazier-Smith et al. (1972), and the present mercury data. The horizontal lines
represent the mean experimental value and its uncertainties. In (b) the open symbols
correspond to the mean experimental values, and the full symbols to our mercury
data. The ∆ = 1 values are taken from figure 16(a), while the ∆ > 1 points correspond
to ∆ = 1.33 data by Ashgriz & Poo (1990), our ∆ = 1.65 mercury measurement, the
∆ = 1.75 data from Brazier-Smith et al. (1972), the ∆ = 2 are an average from the
corresponding data of Park (1970) and of Ashgriz & Poo (1990), and the ∆ = 3 are
data from Park (1970). The lines represent the predictions of models by Brazier-Smith
et al. (1972), by Schmidt & Lutz (1992), by Park (1970), and by Arkhipov, Vasenin &
Trofimov (1983).
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Figure 14. Comparison of available B vs. We, ∆ = 1, measurements: (a) the data of Adam et al.
(1968) for D = 120 and 600 µm water drops; (b) the D = 200–1000 µm the data deduced (see § 6.1)
from the water data of Ashgriz & Poo (1990); (c) the D = 300–1500 µm data of Brazier-Smith et
al. (1972); (d) the D = 72, 100, 160 and 200 µm propanol data of Brenn & Frohn (1989); (e) the
D = 300 µm water data of Jiang et al. (1992); (f) the D = 200 and 700 µm data deduced from
the water measurements of Park (1970). The • correspond to upper C-F data, while the 4 are
lower C-F data. The solid curves represent a Bu = (Weu/We)1/2 fit to the •, leaving Weu as a free
parameter. The dashed lines are drawn through the 4 to guide the eye.
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Figure 15. Comparison of available B vs. We, ∆ > 1, (all water) measurements: (a) ∆ = 1.33 data
deduced (see § 6.1) from the measurements of Ashgriz & Poo (1990); (b) the ∆ = 1.75 data of
Brazier-Smith et al. (1972); (c) the ∆ = 2 data deduced from the data of Ashgriz & Poo (1990, solid
symbols) and the data of Park (1970, open symbols); (d) the ∆ = 3 data of Park (1970). The • and
◦ correspond to upper C-F data, while the 4 are lower C-F data. The solid curves show the fit to
the (•) using equation (2) leaving Weu as a free parameter. The dashed lines are drawn through the
4 to guide the eye.

Figure 16(a, b), shows that the Weu values measured from mercury-drop experi-
ments are consistent with those found for other liquids using standard experimental
techniques. Although there is a significant dispersion, the data also indicate the ade-
quacy of We as a scaling variable for ∆ = 1 collisions. Note that our mercury data
allowed us to extend this verification one order of magnitude in D.
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Figure 16. Diameter (a) and asymmetry (b) dependence of Weu obtained from the data in figures 13,
14 and 15. In (a) are shown the data of Adam et al. (1968, ◦), Brenn & Frohn (1989, ♦), Park
(1970, 2), Jiang et al. (1992, 4), Brazier-Smith et al. (1972, ∇), and the present mercury data (•).
The horizontal lines represent the mean experimental value (solid) and its uncertainties (dashed).
In (b) the ◦ correspond to mean experimental values (including data from other authors), and the
• to our mercury data. The lines represent the predictions of models (see §7).

6.1.2. The lower C-F branch and the Wel and Wem limits

As mentioned before, in central collisions a second critical value Wel defines the
limit for B = 0 coalescence. From that point in the B vs. We plane fragmentation
extends to the small-(non-zero) B region following an (as yet undefined) direct
function of We: the lower C-F branch. Thus, the point where the upper and lower
C-F branches cross defines Wem, the highest We for coalescence (independent of B).

Although our experimental method introduces a distorting effect in the low-B
region which prevents us from drawing conclusions on this aspect from the present
mercury-drop data, we would like to comment briefly on the situation concerning the
available data from collisions in space.

First, the values of the zero-impact-parameter limit Wel vary widely. For example,
in the case of ∆ = 1 water systems, Ashgriz & Poo (1990), as well as Park (1970),
report Wel 6 20, while Adam et al. (1968) found values in the Wel = 60–100 range.
The origin of such discrepancies may be linked to the vapour content of the ambient
gas, as recently demonstrated by Qian & Law (1997).

Secondly, the situation concerning Wem is also intriguing. The only measurements
showing this limit, those of Adam et al. (1968), yield Wem ≈ 100 for small (D =
120 µm) and Wem ≈ 450 for larger (D = 600 µm) drops. This result would indicate
that, contrary to intuition, the temporary system formed by two small drops is
less stable than that formed by bigger ones. It should be added that no other
measurements, including those of Brenn & Frohn, reachingWe ≈ 480, for D = 160 µm
propanol drops, have established a high-We limit for coalescence. Clearly this situation
deserves further investigation.

6.2. Other observables

The other drop-collision parameters which have received some attention are the
residue mass and multiplicity distributions. Measurements for ∆ > 1 by List, MacNeil
& McTaggart-Cowan (1970), McTaggart-Cowan & List (1975), and Bradley & Stow
(1979) for water drops and by Arkhipov et al. (1983) for water glycerine solutions,
showed that, as in our case (e.g. compare figure 7e–h with figure 6 of List et al.
(1970) and figure 1 of Bradley & Stow 1979), the fragmentation of size-asymmetric



Coalescence and fragmentation of colliding mercury drops 309

systems is characterized by a three-peaked residue-mass distribution, two of the
groups corresponding to the quasi-initial masses, and the third group to smaller
satellite drops. Bradley & Stow (1979) qualitatively describe a dependence in the
position of the lower quasi-initial mass group as a function of B, which is consistent
with our quantitative measurements (figure 7). Concerning multiplicity, the direct
dependencies of Np with B and We shown in figure 6, are also similar to what has
been reported by Brazier-Smith et al. (1972, see their figure 5), and Bradley & Stow
(1979, see their figure 7) for water drops.

7. Models
The stability of systems formed when two drops collide has been the subject of

extensive theoretical investigation. The general interest and sophistication of the
models vary enormously depending on the field of application. In meteorology,
for example, the concern is to understand the limiting conditions for permanent
coalescence, i.e. the C-F boundary using simple mechanical arguments. Atomization
and spray experts, more concerned with fragmentation, rely on fluid-dynamic models
to understand their data. At the microscopic scale, molecular and nuclear physicists
deal with collective aspects of clusters and nuclei as if they were drops, having
developed sophisticated quantal and semi-quantal models which include important
fluid-dynamic components. As we shall see, in one of those models the quantal and
Coulomb effects can be cleanly ‘switched off’ allowing us to compare their predictions
with experimental data from the macroscopic domain through the appropriate scaling.
This section contains a brief review of those theories and their predictions.

7.1. The upper C-F branch

Since, as we shall see, most models predict that the upper C-F branch should follow
(or nearly follow) the 1/We1/2 dependence observed experimentally (figures 14 and
15), the accuracy of the predictions in this respect can be better judged by the ability
of each theory to reproduce the mean Weu = 7.19 ± 3.24 which is determined from
the experimental data at B = 1 (see figure 16a). Another important aspect to be
considered is the ∆-dependence predicted by the models which is compared with the
corresponding data in figure 16(b).

7.1.1. Neck vs. bulk-motion models

The upper C-F branch for size-symmetrical systems was first interpreted by Adam
et al. (1968) as due to a rotational instability. They observed that, before disruption,
large-B-value systems assume a rotating dumb-bell shape, i.e. two large masses joined
by an intermediate neck, rotating about the centre of mass. Based on this, they made
an estimate for the onset of disruption at B = 1 by assuming that all the kinetic
energy transforms into rotational energy. Under those conditions the stability of the
dumb-bell was made to depend on whether the neck had sufficient strength to stand
the centrifugal pull of the two (equal) external masses. Using an empirical critical
neck shape, their prediction (Adam et al. 1968) corresponds to Weu(∆ = 1) = 2.1, a
factor of ≈ 4 below the mean experimental value (figure 16).

Park (1970) modified the model to predict B 6 1, and ∆ > 1, values, by introducing
an idealized B-dependent neck dimension and assuming conservation of angular
momentum, instead of energy. The B vs. We dependence predicted by this model can
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be calculated using the expressions

Bu =

(
12c

πWe

)1/2 [
(1 + ∆3)(1 + ∆5)

5∆3(1 + ∆)
+

(1 + ∆)

2

]
(3)

where c(B) is the neck variable

c =

[
4∆2 −

(
B(1 + ∆) +

(1− ∆)

B

)2
]1/4

.

These equations underestimate the data by predicting Weu = 0 for size-symmetric
systems (figure 16a), while, like most other models, yielding a ∆-dependence for Weu
(dotted curve in figure 16b) which increases more rapidly than observed.

More recently Ashgriz & Poo (1990), arguing that separation occurs much earlier
than the development of any significant rotation, rejected the rotational limitation
concept, proposing instead a model in which a fraction of the linear kinetic energy,
termed ‘stretching energy’, is required to balance the surface attraction of a critical
neck. Thus, as proposed by Adam et al. (1962), large-B disruption is said to occur
whenever the sum of the linear kinetic energies of the non-overlapping masses and
of the overlapping masses, weighted by B2, exceeds the surface energy of the neck,
approximated by a cylinder having the length l = D(1 − B) and a mass equal to
that contained in the projected overlapping volumes. This model results in high-order
polynomials relating B to We which for ∆ = 1 can be reduced to

We(∆ = 1) = 8[3(1− B)3(1− 2B)]1/2. (4)

Since, B = 1 implies no volume overlap (hence, no neck), this formulation predicts
Weu = 0 for all ∆-values (see equation 32 of Ashgriz & Poo 1990).

7.1.2. Energy balance model

Brazier-Smith et al. (1972) proposed two models to interpret the upper C-F branch.
One of them avoids complicated shape parametrizations by proposing that the system
would be unstable when the rotational energy exceeds the surface energy necessary
to form two (spherical) droplets out of the (spherical) coalesced system. This leads to
the expression

Bu =

[
4.8f(∆)

We

]1/2

(5)

where

f(∆) =

[
1 + ∆2 − (1 + ∆3)2/3

]
(1 + ∆3)11/3

∆6(1 + ∆)2

is a function which varies from 1.3 for ∆ = 1 to 2.2 for ∆ = 1.65. This model
(Brazier-Smith et al. 1972) has been used extensively (Pruppacher & Klett 1978)
as it provides a reasonable fit to most of the available upper C-F branch data,
predicting a Weu = 6.29 for size-symmetric (∆ = 1) systems, in good agreement with
the experimental observations (see figure 16a). The corresponding prediction for the
∆-dependence of Weu, being more rapid than observed (solid curve in figure 16b),
is the one that provides the best fit for this kind of data, failing only at the highest
∆-values.
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7.1.3. Shape evolution models

The second model in Brazier-Smith et al. (1972) work is based on the similarity
between the equilibrium configurations of a rotating liquid drop near the limiting
angular momentum Lc for size-symmetric breakup, and the last stages of a large-
B collision. This approach represents a conceptual improvement over the above-
mentioned models because it takes into account not only the change in surface
energy but also the change in moment of inertia between the equivalent sphere
and the limiting dumb-bell configurations. The Brazier-Smith et al. (1972) estimate
corresponds to

Bu =

[
ζ(∆3 + 1)13/6

∆3(1 + ∆)We1/2

]
(6)

with ζ = 4.26. Unfortunately, this prediction grossly overestimates the experimental
values, yielding Weu(∆ = 1) = 91.7 with a ∆-dependence (not shown) more rapid
than observed. These authors also noted that their predicted Lc values are a factor of
3.5 larger than the experimental values.

This connection between colliding drops and the equilibrium configurations of a
rotating mass was studied in more detail by Cohen, Plasil & Swiatecki (1974, see
also Swiatecki 1974) who calculated the total (surface+electric+rotational) potential
energy surfaces to determine the saddle point for the symmetric ‘fissioning’ of an
electrically charged rotating drop. When applied to uncharged masses, the Cohen
et al. (1974) theory yields a ζ = 2.78 to be used in equation (6), corresponding to
Weu(∆ = 1) = 4.43. This value, being 35% below the experimental one (figure 16) is
clearly in better agreement than what Brazier-Smith et al. (1972) estimated within the
same theoretical framework. Still, the Lc values predicted by the Cohen et al. (1974)
theory are, typically, a factor of 2 larger than the experimental observations (figure 16).
On this problem, our group (Menchaca-Rocha et al. 1993, see also Cuevas et al. 1993)
used a three-dimensional surface potential model developed more recently by Blocki
& Swiatecki (1982) to search for the L-values at which the energy pocket disappears.
Although this new approach still gave larger than expected Lc, we have shown
(Menchaca-Rocha et al. 1993, see also Cuevas et al. 1993) that the overestimation
can be reduced by introducing, in a simplified way, dynamical effects. An interesting
way of doing so was proposed by Schmidt & Lutz (1992). Based on the Cohen et al.
(1974) saddle point calculations, they argue that the complex deformations observed
in colliding systems result in shallow potential multidimensional energy surfaces. Thus
disruption is said to set in when the centrifugal+surface energy barrier located at the
saddle is overcome by the total collective energy of the equivalent spherical complex.
Schmidt & Lutz (1992) also extended this type of calculation to predict the upper
C-F branch. In our notation, their (Schmidt & Lutz 1992) result can be written as

Bu =

[
24

5

(∆3 + 1)13/3

∆6(∆+ 1)

Yc

We

]
(7)

where Yc = 0.38, which yields Weu(∆ = 1) = 9.19, which lies within the experimental
value (figure 16a); however, its predicted ∆-dependence (as all others) increases faster
that observed (dashed curve in figure 16b).

In general, however, the calculations based on the limit of stability of a rotating
drop assume that the colliding droplets form a rotating system which smoothly
undergoes symmetric breakup as a rotating (equivalent) spherical drop would, with
no loss of energy to either internal or vibrational degrees of freedom. This approach
has serious limitations. First, symmetric two-droplet outcomes are only observed
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for ∆ = 1 collisions in a limited Weber number range (see figure 8). Second, the
initial stages of the collision induce vibrational modes which should also play a
role in determining the outcome. Finally, it is not clear why the loss of energy to
non-rotational modes should be negligible. An alternative approach, which deals with
some of these problems was proposed by Ryley & Bennett-Cowell (1967) who focused
on those energy-damping vibrational modes by proposing that the surface of the
temporarily coalesced system oscillates adopting extreme shapes, represented by three
model surfaces (their figure 4). When enough energy is available for fragmentation to
occur, this is assumed to proceed via the formation of a stretched spherically ended
cylinder (one of the three model shapes) subject to Rayleigh instabilities. However,
their theoretical prediction (Ryley & Bennett-Cowell 1967) for the rate of energy
dissipation is based on parameters (the surface area of each extreme shape and the
angular velocity) to be determined experimentally, thus resulting in a model with little
predicting power.

One last approach we would like to mention is that of Arkhipov et al. (1983)
who, based on the evolution of the surface shapes, used a variational principle to
determine the point at which the effective (surface+rotational) potential between the
two droplets loses its attractive minimum. The corresponding prediction is

Bu =
1

∆3

[
6(1 + ∆3)

We

]1/2

. (8)

By setting B = ∆ = 1 and solving for We in (8) one obtains a Weu(∆ = 1) = 12
prediction, 50% higher than the mean experimental value (figure 16a); however,
against the experimental evidence (dot-dashed curve in figure 16b), this theory predicts
that Weu should be a rapidly decreasing function of ∆.

7.1.4. The effect of ‘rolling’

We now estimate the effect that the ‘rolling’ motion could have on the upper C-F
branch in the present mercury-drop experiments. For simplicity, the calculations will
be based on the energy-balance ideas of Brazier-Smith et al. (1972) which state that
the upper C-F branch reflects the equilibrium between the rotational and the surface
energies (see § 7.1.2). As mentioned previously (§ 4), the rolling motion introduces a
rotational energy, not always present in collisions between free-moving drops. Since
the liquid masses rotate in opposite directions, upon contact the connecting neck is
subjected to a twisting motion which tends to lower its cohesive strength. We assume
that a fraction F of this rolling energy enhances the breaking up of the system. Thus
the equilibrium condition now becomes

Erot + FEroll = σ(Sf − Si) (9)

where the left-hand side of the equation represents the rotational and the fraction
of the rolling energies, and the right-hand side, the surface energy change. Using
spherical shapes to estimate the moments of inertia, and assuming equal linear
momentum for both drops (a good approximation in our experimental situation), the
resulting equation for the upper C-F branch is

B(We) =

[
4.8f(∆)

We
− Ff′(∆)

]1/2

(10)



Coalescence and fragmentation of colliding mercury drops 313

with f(∆) as defined in (5) and

f′(∆) = 0.16
(1 + ∆3)5/3

∆3(1 + ∆2)
.

Since, as expected, in the Eroll = 0 limit, (10) becomes (4), we have used its
parametric form:

B(We) =

[
Weu

Wef(∆)
− Ff′(∆)

]1/2

(11)

(leaving F as free parameter), as well as (5) to fit the data in 16(a, b), and the results are
shown in figure 13(a, b) as solid and dashed curves, respectively. The values obtained
using the non-rolling approximation (equation (5)) are Weu = 6.65, for ∆ = 1, and
8.58 for ∆ = 1.65, while the corresponding fits, assuming rolling (equation (11)),
yielded Weu = 8.32 (with F = 0.43) and 11.02 (with F = 0.75), i.e. ≈ 20% higher Weu
than in the non-rolling case. Although, given the large fluctuations shown in figure 16,
both sets of values lie within the experimental range reported for free-moving drops,
we took the improved overall fit to mercury-drop data as a justification for using the
rolling values shown in figure 16(a, b).

7.2. Other observables

By assuming that the energy dissipated during the collision is proportional to the
overlapping masses, the Ashgriz & Poo (1990) model can be used to provide a
prediction for the B-dependence of the energy loss, as illustrated by the solid curves
in figure 10(c,f).

It is also interesting to note that the B-dependence of the mass distributions shown
in figure 8(d–f) is consistent with a qualitative description given by Ashgriz & Poo
(1990) concerning two competing effects, termed ‘drainage’ and ‘stretching’, in mass
transfer among asymmetric systems. When the contact time is long enough, as in
the most central collisions, drainage is said to appear because of the difference in
internal pressure. This would produce a mass flow from the small to the large drop,
separating the mass groups. On the other hand, for short contact times, characteristic
of the more peripheral collisions, stretching is said to occur because, with no time for
pressure equilibration, the large drop appears softer to the small drop, so that the
small drop can ‘scoop’ mass from the large drop. In figure 8(d–f) we see that, as B
is decreased from 1 to 0.4, the quasi-initial masses approach, as would be expected
for stretching flow, and then separate rapidly at lower B-values as has been argued
(Ashgriz & Poo 1990) to happen in drainage.

7.3. Fragmentation

The few existing theoretical approaches to fusion–fission type fragmentation can be
classified as surface-dynamic and volume-dynamic.

7.3.1. Surface-dynamic model

Time-dependent fragmentation calculations in which the state of the system is
followed as it travels (dissipating energy) through a potential energy landscape have
also been attempted. One example of this surface-dynamic approach is the model
of Cârjan et al. (1986), originally developed to simulate nuclear reactions, which
we modified for its application to macroscopic drops (Menchaca-Rocha et al. 1995).
In it, the shape of the system (necessary to calculate the surface energy, and the
inertia and dissipation tensors) is represented by an axially- and reflection-symmetric
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Legendre-polynomial parametrization:

ρ2
s (z) = R2

o

K∑
k=0

qkP2k(z/z0) (12)

where z is the coordinate along the symmetry axis, ρs is the distance perpendicular
to the symmetry axis, zo is one-half the distance between the two ends of the shape,
Ro is the radius of the spherical drop having the mass of the coalesced system,
P2k is a Legendre polynomial of degree 2k, while the qk (for k > 0) are the K-
independent symmetric shape coordinates. Assuming incompressibility, the quantity
qo is determined by volume conservation. The results discussed here are restricted to
K = 5.

In these calculations, the potential energy of the system is composed of an attractive
surface, and a repulsive centrifugal term. The collective kinetic energy is given by

T = 0.5Mij(q)q̇iq̇j = 0.5[M(q)−1]ijpipj (13)

where Mij(q) is the shape-dependent inertia tensor. The collective momenta p are
related to q̇ and Mij through

pi = Mij(q)q̇j . (14)

The internal degrees of freedom are represented by a dissipative force having a
mean component in the ith direction:

Fi = −ηij(q)q̇j (15)

where ηij(q) is the shape-dependent dissipation tensor η(q).
With the above ingredients, the generalized Hamilton equations of motion were

solved to determine the time evolution of the system. A typical CPU time for one
macroscopic drop collision simulation is 10 s in a CRAY XMP computer.

In figure 17 we illustrate what is predicted by the dynamical model for a mercury-
drop collision having the same initial conditions as the event shown in figure 3(f). A
restriction imposed by the shape parametrization (12) implies that the time evolution
predicted by the model begins and ends when the initial and final necks reach a
small but finite value, i.e. the simulation starts when the drops are already in contact
and stops when the outermost necks reach the limiting diameter. Besides that, and
the fact that the real shapes are more complex, the overall features of the observed
time sequence seem to be well reproduced by the model: there are three bodies
in the final state, and the system separates at a similar angle. There are, however,
two important differences: the predicted interaction time is approximately one-third
of what is observed, and the relative size of the drops is less well reproduced, i.e.
the model predicts neck particles which are bigger than the observed ones. The
latter is better seen in figure 18 showing the predicted B-dependence of the mass of
the residues, normalized to the total mass mi/mt, which should be compared with
figure 8(a–c). The larger mass of the middle drops and the faster time evolution
predicted could be expected to result from the assumption of rigid rotation implicit
in the model, placing all the available angular momentum in whole-body rotation.
Thus the system is predicted to rotate faster and stretch longer. The model provides
predictions for other ∆ = 1 observables with different degrees of success. The mean
multiplicity distributions, shown as solid and dashed lines in figure 6(a) (see caption),
are examples of this.
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Figure 17. Predicted time evolution for a ∆ = 1 mercury-drop collision with B = 0.7 and We = 35,
conditions which are similar to those of figure 3(f). The initial drops move against each other in
the horizontal direction, while the time runs as indicated, in units of 0.325 ms, approximately three
times faster than the experimental case (figure 3f).
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Figure 18. Predicted residue-mass distributions for ∆ = 1 systems, as a function of B and We,
following the same conventions as in figure 8.

7.3.2. Volume-dynamic models

The volume-dynamic approach involves the complex task of solving equations of
three-dimensional unsteady fluid flow with free surfaces. Solutions of the so called
Boltzmann–Uhleing–Uhlenbeck and the Landau–Vlasov equations have been very
successful in explaining observables in nuclear reactions (i.e. Aichelin et al. 1988)
and molecular cluster (Guilleumas et al. 1993 and references therein) collisions.
Unfortunately in these formulations the quantum-mechanical aspects are not easily
separable from the purely fluid-dynamic ones.

Concerning macroscopic (non-quantal) systems the problem is generally tackled
using the finite difference method of solving the Navier–Stokes equations in the bulk.
The surface evolution is, then, dealt with in an ad-hoc way using interface tracking
procedures. One such approach, developed by Lafaurie et al. (1994), has been used
to simulate (peripheral and central) coalescence drop collisions, resulting in shape
evolutions which are very similar to what we observe (compare their figures 17 and
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18 with our figure 3a, b). Unfortunately, due in part to the large CPU costs involved
(hours and even days per collisions), those hydrodynamic codes have not been used
to provide detailed predictions for fragmentation observables (Np, mr , etc.). We would
like to mention that faster, two-dimensional, simulations by Poo & Ashgriz (1992),
and Lafaurie et al. (1994), have been shown to reproduce well the surface evolutions
observed in three-dimensional liquid-drop experiments.

8. Conclusions
The fragmentation occurring in the collisions of mercury-drop pairs which move

on a horizontal glass surface has been studied experimentally. A new technique
is presented in which the drop formation and the acceleration stages are decoupled,
allowing precise measurements of the most relevant initial parameters (masses, impact
parameter and relative velocity). By restricting the motion of the collision residues
to the horizontal plane the new method also permits a precise determination of
important final parameters, such as the mass, speed and direction of each residue. An
event-by-event-type analysis was introduced to extract the statistics and correlations
of the various parameters. By comparing the results from the present mercury-drop
experiments to what is known from more standard techniques, involving free-moving
drops, we find that the influence of the glass surface (the price paid to obtain
this unprecedented amount of information from each collision) does not significantly
change the phenomenology, particularly of the non-central collisions. The use of larger
(a few mm diameter) and more dense drops implied lower velocities for a given We,
thus reducing the aerodynamic effects to such a degree that no appreciable bouncing
collisions are observed. The analysis from 500 size-symmetric and 500 size-asymmetric
collisions using this mercury-drop technique, and of other data, shows that, below a
critical Weber number, Weu (≈ 7 for size-symmetric systems and 6 15 for ∆ 6 3), all
collisions result in coalescence, while beyond that point fragmentation appears, first
in the off-centre collision region and, eventually, expanding to all impact parameters.
One characteristic of drops moving on a solid surface is that, in head-on collisions, a
liquid column (instead of a disk) is formed in a direction perpendicular to the collision
trajectory which breaks up beyond a critical value, Wel (≈ 90 for ∆ = 1 systems).
As in collisions involving free-moving drops in the same 0.5 6We 6 125 regime, the
mass distribution of fragments is characterized by two large residues, having masses
similar to those of the initial drops, and a number of smaller fragments produced
in the intermediate neck region. Yet, our measurements as a function of the impact
parameter now show that the mass of some of those neck fragments increases as
the impact parameter decreases and that the largest number of drops occurs in the
0.5 6 B 6 0.7 impact parameter range. The data from collisions between unequal
drops also show that no appreciable mass transfer occurs, except at the lower impact
parameters where the large drop draws mass from the smaller one. Concerning
the speed of the residues, it was found that it has an inverse correlation with the
angle at which the fragments are emitted and a direct correlation with the impact
parameter. The dissipated energy was shown to be closely correlated with the impact
parameter, following a dependence which resembles that of the overlapping volumes.
The present experimental data, along with those reported in the literature for other
liquids of similar kinematic viscosity, were used to test the validity of We scaling for
drop-collision phenomena. The theoretical situation concerning existing hydrostatic
drop collision models, mostly developed to understand the limits of coalescence, was
reviewed, and the corresponding predictions were compared with the experimental
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data. Finally, a surface-dynamic nuclear fragmentation model, adapted by us for its
use in macroscopic drop collisions, was presented, and it was shown to reproduce
some aspects of the observed phenomena.
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